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Abstract

Extreme heat is becoming more frequent and intense due to climate change, particularly in cities
where the urban heat island effect amplifies high temperatures. This paper estimates the causal effect
of temperature on daily revenue at over 15,000 consumer-facing storefronts in the 49 largest U.S. metro
areas between 2019 and 2023, with a focus on how green space can mitigate revenue loss caused by
extreme heat. I find that revenue begins to decline on days with a maximum temperature above 35 °C
(95 °F) and drops by 9 percent on days above 37.5 °C (99.5 °F) relative to the average revenue on a 20 °C
(68 °F) day. Substituting spending across days mitigates some damage from an extreme heat event, but
a 1.3 percent revenue drop is persistent for two weeks following an extremely hot day. Because temporal
substitution does not completely mitigate the negative effect of extreme heat, I examine the role of urban
green space as a climate adaptation strategy. Using variation in greenery around storefronts belonging to
the same brand within a city, I find that a one percent increase in surrounding green space raises revenue
by 1.78 percent on extremely hot days: 0.96 percent from general amenity value and 0.82 percent from
its cooling effect. These results suggest that green infrastructure can improve firm resilience to heat,
providing evidence of a private incentive to finance public urban green space that could simultaneously

provide a positive externality.

1 Introduction

Climate change is increasing the frequency and severity of extreme heat events, creating an urgent need for
cost-effective adaptation strategies (Calvin et al., 2023). Cities, which house over half the world’s population
and generate 80 percent of global GDP (World Economic Forum, 2022), are particularly vulnerable because
the urban heat island effect amplifies heat waves (Perkins-Kirkpatrick and Lewis, 2020; Mohajerani, 2017).
Extreme heat damages physical and mental health (Gould et al., 2024; Carleton et al., 2022; Heutel et al.,
2021; He et al., 2025; Janzen, 2025), lowers welfare (Kuruc et al., 2025), slows economic growth (Nordhaus,
2017; Tol, 2018; Dell et al., 2012), reduces labor productivity (Dasgupta et al., 2024; Park, 2022), and
dampens consumer demand (Lee and Zheng, 2025; Berg et al., 2025; Lai et al., 2022).

Urban green space offers a promising adaptation strategy. Vegetation cools surrounding areas by creating
a microclimate (Wong et al., 2021), while also providing a wide range of ecological and social benefits (Cook
et al., 2025). Nature-based solutions are, on average, 50 percent more cost-effective than traditional “grey”

infrastructure (World Economic Forum, 2022). Yet despite their promise, financing urban green space
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remains a challenge. Practitioners face barriers to investment (Diep and McPhearson, 2025; Toxopeus and
Polzin, 2021), and most research has emphasized ecological rather than economic benefits (McPhearson et
al., 2025).

This paper estimates how extreme heat affects storefront revenue and how urban green space mitigates
those losses. Using daily credit and debit card transactions from over 15,000 storefronts across the 49 largest
U.S. metropolitan areas between 2019 and 2023, combined with high-resolution temperature and green space
data, identifies the causal effect of heat on firm performance. Revenue begins to decline once daily maximum
temperature exceeds 35 °C, falling by nearly 9 percent relative to a mild day when temperatures surpass
37.5 °C. Extremely cold days have comparable effects. A 40 °C day lowers revenue nearly as much as a 0 °C
day.

Green space substantially reduces the losses from extreme heat without increasing losses from cold
weather. By comparing storefronts of the same brand within the same city but with different surround-
ing vegetation, this paper finds that one percent increase in nearby green space raises revenue by 0.8 percent
on hot days due to its cooling effect. Green space also provides a general amenity value. A one percent
increase in green space increases revenue by 0.96 percent, regardless of temperature. On extremely hot days,
these effects compound and revenue increases by 1.76 percent for a one percent increase in green space.

Using these heat and green space effect, this paper calculates how many years it would take for additional
revenue to cover the cost of expanding green space. For the average storefront in the Broad Southwest
(California to Mississippi), it would take less than three years for a business to recuperate the cost of
moving from a low green space scenario to a high one. This calculation is an underestimate because it only
considers the gains from green spaces’ ability to regulate the microclimate, and does not include its general
amenity value. The speed at which an investment in green space pays itself off only shortens under climate
warming scenarios. These estimates characterize the private return to adaptation investments, because once
the additional revenue from an increase in green space supersedes the cost of investment, the green space
provides a continuous flow of benefits to private businesses.

This paper contributes to three strands of literature that together frame how climate shocks shape
economic activity and how natural capital can serve as adaptation infrastructure.

First, it builds on the literature using weather shocks to anticipate how climate change will affect economic
outcomes (Auffhammer et al., 2013). A growing subset of this work has moved beyond aggregate outcomes
to examine how temperature influences specific goods and services. For example, Lai et al. (2022) show
that extreme heat and cold reduce consumption in China, particularly at clothing and department stores,
with regional adaptation strategies moderating losses under severe climate scenarios. Lee and Zheng (2025)
find that extremely hot and cold days suppress retail spending in the United States, with little evidence of
temporal substitution. Kuruc et al. (2025) show that willingness to pay for baseball games declines on very
hot or cold days, while other work links temperature shocks to changes in demand for energy (Auffhammer,
2022; Manderson and Considine, 2025), air conditioners (He et al., 2022), and sugary drinks and desserts
(He et al., 2025). Firm-level evidence is more limited. Berg et al. (2025) find that extreme temperatures
depress earnings, but their use of annualized data masks short-run dynamics.

This paper advances this literature by showing that extreme temperature events reduce revenue at the
daily level for over 15,000 storefronts across U.S. metropolitan areas. High-frequency microdata reveal
the damage from the shock of an extreme heat, estimating an effect that average temperatures may miss
in aggregate studies. Emerging evidence suggests that extreme weather events may be more disruptive

to economic activity than long-run changes in average temperature (Akyap: et al., 2025), and the results



here demonstrate how those shocks transmit through firm revenues. By leveraging within-firm temperature
variation, this paper isolates the causal effect of daily heat shocks on business performance and provide
evidence that private firms have an incentive to adapt. Having established the short-run revenue impacts
of extreme heat, this paper considers how natural capital, specifically urban green space, can mitigate those
losses.

This paper extends the literature valuing urban green space. The urban ecology and planning literatures
document that vegetation reduces the urban heat island effect and delivers a wide array of co-benefits,
including improved air quality, carbon sequestration, storm water management, and mental health benefits
(Wong et al., 2021; Keeler et al., 2019). Individuals reveal demand for these amenities, for instance by
choosing longer routes along tree-lined streets (Salazar Miranda et al., 2021). Economists have primarily
valued urban green space through its capitalization into housing prices. Buyers in Phoenix and Toronto pay
premiums both for access to vegetation and to avoid extreme heat (Klaiber et al., 2017; Han et al., 2024),
while studies in Portland and Minnesota similarly find that proximity to tree cover raises property values
(Netusil et al., 2010; Sander et al., 2010). Natural experiments, such as tree die-off from emerald ash borer,
further confirm causal effects (Han et al., 2024). Work outside the housing market emphasizes cost savings,
showing that urban trees provide at least $500 million annually in the U.S. in cooling energy savings and
$400 million in storm water treatment costs (Heris et al., 2021).

This paper demonstrates that the value of green space extends beyond residential amenities and cost
minimization to the commercial sector. Brick-and-mortar storefronts capitalize on nearby vegetation through
higher daily revenue, particularly during extreme heat events. Because many of the goods and services sold
in these settings are non-durables purchased regularly, this is evidence that green space contributes directly
to day-to-day economic activity. In this way, urban green space functions as a natural capital asset for
firms, sustaining commercial performance while delivering broader ecological benefits. Because green space
generates both ecological benefits and measurable private returns, the final contribution examines how these
findings inform financing.

This paper’s final contribution is to the literature on financing nature-based adaptation. Much of the
work on financing nature-based solutions has focused on mitigation, such as carbon sequestration, where
global benefits enable participation in international markets (Barbier and Burgess, 2025; Brumberg et al.,
2025). Adaptation, by contrast, generates primarily local benefits and therefore presents different economic
incentives for investment and financing challenges. Because adaptation cannot be sold on a global market due
to the flow of benefits only being experienced locally, it depends on local demand and institutions that support
place-based investment. Recent research points to the promise of public-private partnerships, including
payments for ecosystem services (Plantinga et al., 2024), but adaptation finance remains an underexplored
element of nature-based climate solutions.

By documenting that storefronts directly benefit from surrounding green space through higher revenue,
this paper identifies a measurable private return to adaptation investment. This evidence highlights that
cost-sharing arrangements between municipalities and the businesses that gain from its cooling and amenity
value is a potential mechanism for scaling urban green infrastructure. In doing so, this work frames urban
green space not only as a public good but also as a provisioner of private economic benefits, offering a
pathway to mobilize private capital toward climate resilience.

The paper proceeds in the following way. Section 2 discusses a conceptual framework that sets the stage
for the empirical identification strategy. Section 3 summarizes the multiple datasets I use to identify the

effect of heat and green space on revenue. Section 4 outlines the identification strategy, introducing three



different models I use to identify the effect of heat on revenue, how heat interacts with green space, and
how to recover the main effect of green space. Next, Section 5 presents the results, including temporal

substitution and climate scenarios. Finally, Section 6 offers a brief discussion and conclusion.

2 Conceptual Framework

Consider a setting where extreme heat and green space affect storefront revenue through consumers’ pref-
erences for pleasant shopping and dining experiences. Consumers are more likely to shop in greener, more
comfortable environments because green space improves aesthetic quality, offers recreational and mental
health benefits, and reduces exposure to extreme heat. These two channels (general amenity value and
microclimate regulation) mean that green space can be capitalized into storefront revenue. The goal of this
section is to formalize this intuition and show how this paper’s empirical models follow from the framework
that (1) extreme heat shocks reduce revenue because it creates a less pleasant shopping experience, (2) busi-
nesses can capitalize on the ability of green space to mitigate those losses because of green space’s ability to
regulate the microclimate, and (3) businesses may anticipate these effects when choosing locations, leading
brands to have a shared citing strategy that is not exogenous to green space.

A shopping or dining experience can be thought of as a composite good (x,q) comprised of a vector
of private attributes specific to the storefront x and a vector of nearby environmental attributes q that
complement the private characteristics. This paper’s empirical strategy decompose revenue into various
attributes of the storefront, including the temperature, surrounding green space, and their interaction to

estimate how each affects revenue.

2.1 The Effect of Heat on Revenue

Let revenue be the demand for the composite good multiplied by a fixed price,

R(x,q) = p x d(x,q).

This framework assumes fixed prices in the short run. Prior empirical work has found that retail and
supermarket prices do not respond to daily changes in demand due to weather shocks (Lee and Zheng, 2025;
Gagnon and Lépez-Salido, 2020). Therefore, changes in revenue are driven by changes in demand. Assume
markets clear, and thus the quantity supplied is equal to the quantity demanded.

A threshold temperature exists T such that an increase past it leads to a decrease in demand for the

composite good,

dd(x,q)

<0:qr>T".
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This assumption is supported by evidence that Americans place the most value on temperatures around 18
°C (65 °F) and dislike marginal increase in heat more than they dislike the temperature becoming marginally
cooler (Albouy et al., 2016). A decrease in revenue follows directly from the decrease in demand on days

above T,
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This mechanism is consistent with evidence from the American Time Use Survey, which shows that
individuals spend more time at home hot days (Figure 1). This shift in time use highlights why extreme

heat reduces demand for storefront goods and services (see Appendix B for details).

Figure 1: Effect of Daily Maximum Temperature on Time Spent Away from Home
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Notes: Coefficients and 95% confidence intervals from regression of daily minutes spent away from
home on 5°C temperature bins (reference = 15-20 °C), estimated with ATUS microdata. Models
control for state, year, and day-of-week fixed effects, as well as rural residence, hourly worker status,
gender, and holiday indicators. Results show that time away from home peaks at mild temperatures
and declines sharply above 35 °C.

2.2 The Effect of Heat and Green Space on Revenue

Now, recognize that green space has the ability to regulate the microclimate (Wong et al., 2021), reducing
the heat that customers experience during extreme heat events. Assume that climate regulation occurs if the
surrounding green space is a above a threshold, g > G*. This increases the threshold temperature where
heat becomes damaging to business revenue through its effect on consumer demand by 7 degrees,
M <0:qr>T"+r7
dqr
and qg > G*.

Green space is a natural asset to businesses because it mitigates the damage to revenue caused by heat,
and thus enables customers to continue experiencing a pleasant shopping experience during a heat event.
Green space’s climate regulation provides a flow of benefits to these businesses during extreme heat events
by mitigating the revenue losses driven by decreased demand.

In addition to preventing losses from extreme heat, green space also provides a general amenity effect.
Therefore, an increase in green space surrounding a business leads to an increase in revenue through its

increase in consumer demand,

OR(x,q)

> 0.
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Therefore, there are two channels that green space can provide benefit through: its own main effect (general



Table 1: Summary of Included Industries

NAICs Code Industry Description Storefront Count
722 Food services & drinking places 9524
445 Food & beverage stores 1226
812 Personal & laundry services 881
448 Clothing & accessories stores 736
446 Health & personal care stores 713
452 General merchandise stores 526
453 Misc. store retailers 418
441 Motor vehicle & parts dealers 340
451 Sporting goods, hobby & book stores 299
447 Gasoline stations 273
811 Repair & maintenance 209
- Total 15145

amenity value) and its interaction with temperature (microclimate regulation).

2.3 Siting for Green Space

If green space raises revenue both directly and by mitigating heat, firms may anticipate these effects when
choosing locations. Evidence from the housing market shows that households are willing to pay for access
to green space and to avoid extreme heat (Klaiber et al., 2017; Han et al., 2024; Netusil et al., 2010; Sander
et al., 2010), while urban trees reduce energy expenditures and stormwater management costs (Heris et al.,
2021). These findings suggest that businesses, like households, may consider environmental amenities when
selecting sites, particularly when those amenities influence customer demand or operating costs.

As a result, storefronts belonging to the same brand may share siting strategies, consistently choosing to
site in greener or cooler parts of a city. In the empirics, this creates a challenge: brand-by-city fixed effects
absorb part of the main effect of green space on revenue. A second-stage regression is therefore required to

recover the portion of green space’s effect that is otherwise lost when controlling for shared siting strategies.

3 Data and Motivating Statistics

This section describes the data used to estimate how extreme temperatures affect storefront revenue and the
benefits provided by green space. The analysis relies on a novel dataset that combines daily credit and debit
card transactions, storefront characteristics, daily temperature records, and satellite data on tree canopy

cover.

3.1 Storefront Revenue

The SafeGraph Spend dataset is used to measure daily storefront revenue. This dataset collects daily credit
and debit card transactions at individual places of interest, hereafter referred to as storefronts (SafeGraph,
2025b). The SafeGraph Spend data closely track earnings reported by companies (see validation), supporting
its use for observing revenue at the storefront level.

The SafeGraph Spend dataset is available from 2019 onward; this paper uses data from 2019 through
2023. Because the focus is on the effects of urban heat and green space, the analysis is restricted to U.S.

metropolitan statistical areas with populations over one million in 2020 (Figure 2). Only storefronts located
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Figure 2: The 49 Cities in the Dataset
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within city limits are included, ensuring that the analysis reflects the effects of urban, rather than suburban,
heat and green space.

The sample is further restricted to industries that sell goods and services directly to consumers. To be
included, an industry must contain at least 200 businesses across the sample cities. These are primarily
restaurants and retail stores. A full list of included industries is provided in Table 1.

The SafeGraph Spend dataset also provides information on the income distribution of customers. Each
month, the number of customers visiting a storefront is observed in seven annual income brackets: < 25K,
25-45K, 45-60K, 60-75K, 75-100K, 100-150K, and > 150K. SafeGraph classifies customers into these income
bins using a proprietary model based on their transaction and spending behavior.

In robustness checks, the SafeGraph Spend dataset is also used to examine the share of spending that
occurs at the storefront’s physical location versus online, through transaction intermediaries such as UberEats
or Square.

Finally, storefront characteristics are obtained from SafeGraph’s Global Places (POI) & Geometry dataset
(SafeGraph, 2025a). This dataset provides information on the size of each storefront, brand affiliation,
latitude and longitude coordinates, North American Industry Classification System (NAICS) codes, the

presence of an associated parking lot, and whether the business is part of a shopping mall or shared plaza.

3.2 Daily Temperature

Daily weather conditions are measured using the nClimGrid-Daily dataset provided by the National Oceanic
and Atmospheric Administration (NOAA) (Durre et al., 2022). This dataset contains interpolated daily
values of maximum and minimum temperature, precipitation, and other weather variables across the con-
tiguous United States, with a gridded spatial resolution of approximately 5 kilometers. NOAA aggregates
these data to the census tract level by calculating the spatial mean of daily maximum temperature across
all grid cells intersecting each tract. The analysis uses these aggregated tract-level values. Figure 3 shows

the distribution of heat observation.



Figure 3: Distribution of Temperature Observations
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3.3 Urban Green Space

Urban green space is measured using the Tree Canopy Cover (TCC) dataset from the National Land Cover
Database (NLCD), developed by the U.S. Forest Service (Housman et al., 2023). This dataset provides
annual, 30-meter resolution estimates of percent tree canopy cover from 2011 to 2023, derived from Landsat
and Sentinel-2 satellite imagery. The TCC product covers the conterminous United States, allowing spatial
variation in urban tree canopy to be observed and providing some temporal variation.

Tree canopy cover is assigned to each storefront by drawing a buffer with a fixed radius around the
storefront’s latitude-longitude location and calculating the average canopy cover within that buffer. In
the preferred specification, the buffer radius is 200 meters, capturing immediate surrounding green space.
Alternative buffer sizes are tested in robustness checks to assess sensitivity.

The suitability of the TCC dataset for measuring urban green space is validated by comparing it with
two alternative datasets. First, the U.S. Forest Service’s TCC product is compared to other layers in the
National Land Cover Database (NLCD), provided by the U.S. Geological Survey (Dewitz, 2023). Second,
for a subset of cities, the TCC data are compared to a volumetric green space index derived from Google
Street View imagery provided by Arianna Salazar-Miranda’s Livable City’s Lab.

Using the NLCD impervious surface layer, average tree canopy cover near a business is found to be highly
negatively correlated with impervious surface, with a correlation coefficient of approximately 60 percent.
Using the Google Street View index, tree canopy cover is 70 percent correlated with the volumetric measure
of green space. In contrast, the Google Street View and NLCD measures are only 44 percent correlated with
each other. The TCC dataset is used as the preferred measure of urban green space because it is strongly
correlated with both alternatives and because tree canopy plays a key role in shaping local microclimates.

Two groups of storefronts are the focus of the primary analyses. The first includes all storefronts not yet
filtered out with at least 350 daily observations. The second is a subset of these businesses that are affiliated

with a brand, further restricted to brands with at least five storefronts located within the same metropolitan

1The dataset provided by the Livable City’s Lab is similar to that used by Falchetta and Hammad (2025).



Figure 4: The distribution of green space across all businesses and brands
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area. This restriction enables this paper’s empirical models to use spatial variation within brand-city-month
clusters to identify the effect of green space on revenue.

The distribution of green space surrounding storefronts is shown in Figure 4. Panel A displays the
distribution for all storefronts and only storefronts that are a part of a brand. Panel B provides a visual
example of storefronts located in low, medium, and high green space environments. The median amount of
green space surrounding businesses also varies greatly by city. For instance, the median surrounding green
space in Portland, OR is 14 percent, the highest of any city in the dataset, while the median in Tucson, AZ
is less than one percent, the lowest. Median values for climate regions are presented in Table 2, and results

for all cities are presented in Appendix Al.

4 Empirical Strategy

This paper estimates the effect of extreme heat and urban green space on revenue using the combined panel
data on daily storefront-level revenue, daily maximum temperature, and annual tree canopy cover. The em-
pirical strategy exploits plausibly exogenous day-to-day variation in local maximum temperature at a specific
storefront, as well as cross-sectional variation in green space across firms that follow similar siting strategies
(i.e., businesses that are part of the same brand in the same city). The analyses regress the logarithm of

revenue on measures of temperature and green space while controlling for storefront characteristics. This



Table 2: Median Surrounding Green Space
Climate Region Median Green Space Average Temp (°C)

Northwest 10.62 17.60
Southeast 9.09 24.93
Upper Midwest 5.96 17.15
Ohio Valley 5.42 19.02
Northeast 5.22 18.35
South 3.78 26.27
West 2.60 23.01
Southwest 2.11 24.23

approach identifies the semi-elasticity of revenue with respect to temperature, the elasticity of revenue with
respect to green spaces. I estimate a second-stage model to the main effect of green space after accounting

for brand-by-city fixed effects and separate green space’s cooling effect from its general amenity effect.

4.1 Estimating the Effect of Heat on Revenue

Model (1) estimates how temperature affect daily revenue at storefronts,

I(Rit) = Brlim + B Y 1(Hir = h) + o + 74 + €31, (1)
h

where R;; is revenue at storefront ¢ on day ¢, and I;,, is a vector of controls for the monthly m distribution of
customer income, measured as the share of monthly customers in seven income bins. The variable I(H;; = h)
denotes a set of indicator variables for daily maximum temperature, binned in 2.5 °C increments. The 20-22.5
°C bin is excluded and serves as the reference level. Storefront fixed effects a; control for all time-invariant
characteristics of each location, while temporal fixed effects 7y capture day-of-week, city-by-month, and year
effects, accounting for weekly, seasonal, and annual variation in revenue.

To interpret the coefficients causally, this paper assumes that daily variation in temperature is exogenous
to other unobserved determinants of revenue within a given storefront after controlling for broad temporal
trends.

Model (1) is this paper’s preferred model for estimating the effect of heat on revenue. However, a modified
version of Model (1) that includes an interaction between the temperature bins and the average maximum
temperature in a city is estimated, along with a model where heat’s effect on revenue follows a second-order
functional form, to understand whether significant regional adaptation to heat occurs within my sample.
These modified models tests whether regional adaptation has a significant effect on how heat effects revenue
within the U.S. (see Appendix C for details).

4.2 Temporal Substitution

Before testing whether green space mitigates the damage caused by extreme heat, this paper examines
whether temporal substitution offsets revenue losses with two approaches. The first evaluates how total
revenue over a period responds to the occurrence of an extreme heat event. The second estimates how much
revenue rebounds when a “pleasant” day (20-35 °C) follows an extremely hot day (above 37.5°C). The first
approach speaks to the overall economic relevance of substitution by considering both the magnitude of

potential rebound and the frequency with which such opportunities arise. The second directly tests whether

10



a rebound effect occurs when favorable weather follows extreme heat.

To test whether revenue rebounds within a period of k € {1,...,14} days, Model (2) estimates the effect
of an extreme heat event on total revenue in that period. An indicator variable, preceded by hot%, equals
one if at least one of the previous k days at storefront ¢ on day ¢ had a maximum temperature above 37.5

°C. The estimating equation is
k
In (Z Rw) = BrL, + 05 - preceded,byjlotft + a; + 7 + €1, (2)
v=1

where R, Liyn, oy, and 74 are defined as in Model (1). The coefficient 6 captures the semi-elasticity of total
revenue in a k-day period with respect to an extreme heat event. A negative 6 indicates that revenue has
not fully rebounded within k days, while a coefficient close to zero implies that losses are recovered through
temporal substitution.

To test whether substitution occurs specifically when pleasant weather follows extreme heat, Model (3) es-
timates the effect of a pleasant day occurring exactly k days after a hot day. The indicator pleasant_post_hot¥,
equals one if day t is pleasant and was preceded exactly k days earlier by a day with maximum temperature
> 37.5 °C. The specification is

In(R;:) = Brlit + ~p1easant,postj10tft + oy T+ o€ (3)

The coefficient (. captures the semi-elasticity of revenue with respect to a pleasant day that follows extreme
heat at lag k. A positive (i indicates a rebound effect, while small or insignificant values suggest limited or

no substitution.

4.3 Interaction with Urban Green Space

To identify how urban green space mitigates revenue losses from extreme heat that are not already offset by

temporal substitution, Model (1) is extended to include green space and its interaction with temperature:

In(Rit) = Brlim + Bssi + BiLoti + BaGiy + Ba Y _1(Hi = h)
h

+ BGH <Giy X Z H(Hzf = h)) + Qbem + Tt + €ibetmys (4)
h

where s; is the size of storefront i, Lot; indicates whether the storefront has an associated parking lot, and
G, measures percent tree canopy cover within a designated buffer of storefront ¢ in year y. The fixed effects
Qpern are brand-by-city-by-month, absorbing shared demand shocks at the brand—city—month level. The
fixed effects 7, capture day-of-week and year-specific spending patterns.

Fitting Model (4) requires limiting the analysis to storefronts that are a part of a brand. After dropping
observations of businesses with no brand affiliation, the dataset covers 3,005 storefronts that are affiliated
with 58 different brands, and has 3.6 million observations. The preferred specification uses a 200-meter
buffer to measure green space around each storefront. Robustness checks vary the buffer radius to assess
sensitivity.

Because temporal variation in tree canopy is limited, identification relies on spatial variation across

storefronts in the same city. As a result, Model (4) does not include storefront fixed effects, unlike Model

11



(1). Instead, the specification controls for observable storefront characteristics (I;m, s;, and Lot;) and
exploits variation across storefronts of the same brand in the same city and month, captured by apen,. Under
the assumption that stores belonging to the same brand in a given city share a siting strategy (See Section
2.3), this variation in surrounding green space is plausibly exogenous to unobserved determinants of revenue.
Even if green space is correlated with other amenities that a business may sort on, so long as all storefronts
that are a part of the brand are sited with the same strategy, then the variation in green space within a
brand in a city is plausibly exogenous.

The coefficients B¢ and Bgpy therefore capture, respectively, the main effect of green space and its
moderating effect on heat shocks. To interpret the results causally, this paper assumes that after controlling
for storefront characteristics and fixed effects, variation in green space within brand-city clusters is not
correlated with other revenue determinants.

This identification strategy carries the risk that part of the revenue increase attributable to green space’s
amenity effect will be absorbed by the brand-by-city-by-month fixed effects. If a brand systematically locates
its storefronts in greener areas because its goods or services are consistently complemented by green space,
the average effect of green space across that brand’s locations will be controlled for in apen,. As a result,
the coefficient 8¢ may understate the true main effect of green space. Abbott and Klaiber (2011) provide
an in-depth discussion of how fine-scale fixed effects can lead to downward bias in estimates of non-market
goods’ value.

To address the possibility that part of the main effect of green space is absorbed by the brand-by-city-
by-month fixed effects, this paper adopts two strategies. First, all results from Equation (4) are presented
as lower-bound estimates of the elasticity of revenue with respect to green space. While the coefficient g
may be biased downward by the fixed effect structure, the interaction terms Bgg is not. The lower-bound

elasticity is therefore defined as

0In(R)
oG

= fBg + BauH™, (5)

where the elasticity is conditioned temperature a realized temperature H* because of temperature’s interac-
tion with green space, and Sg g is the corresponding coefficient.

As a second strategy, this paper implements a two-stage approach to recover the portion of the green
space effect absorbed by the brand-by-city-by-month fixed effects. In the second stage, the estimated fixed

effects aperm, from Model (4) are regressed on a brand’s average surrounding green space,

Qpem = f(ébcy) + v2Indp + €pem, (6)

where G,y is the average green space for brand b in city ¢ in year y, f(-) is the functional form chosen to
model the main effect of green space on revenue (linear, logged, second-order and third-order polynomial),
and Ind, is a categorical variable denoting the six-digit NAICS industry of brand b. This second-stage
regression recovers the main effect of green space on revenue that is otherwise absorbed by the fixed effects.
The approach is inspired by methods in Zhang and Smith (2011), adapted here to the context of urban

storefronts. The elasticity of revenue with respect to green space is then expressed as

0In(R)
oG

= f(G)+ Be + BauH™. (7)

This paper reports the semi-elasticities from both Equation 5 and Equation 7. Preferred specifications
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use Equation 7 because it includes the recovered part of the general amenity value of green space, in addition

to its role as a regulator of extreme heat.

4.4 Threats to Identification

A potential threat to identifying the effect of green space on storefront revenue is the correlation between
green space and demographic characteristics that shape consumer spending. Prior research shows that green
space is distributed unequally. Redlined neighborhoods in the U.S. (Nardone et al., 2021), communities of
color in Illinois (Zhou and Kim, 2013), and low-income communities in the Northeast (Sims et al., 2022)
all tend to have less surrounding vegetation. This raises the concern that businesses serving lower-income
customers, and therefore generating less revenue, may also be systematically located in areas with less green
space.

This paper address this concern by examining the correlation between green space and measures of
income. The correlation between the median income of the census tract in which a storefront is located, and
its surrounding green space is positive but small (correlation coefficient: 0.02, p-value: 0.01). In contrast,
the correlation between a storefront’s surrounding green space and the median income of its customers is
near zero (correlation coefficient: -0.002, p-value: 0.001). These results suggest that people encounter a more
equitable distribution of green space in the places where they shop than in the neighborhoods where they
live, and that spatial disparities in income are unlikely to bias the estimates presented in this paper.

5 Empirical Results

This section presents the main empirical findings in seven parts. First, the presents how extreme temperatures
affect storefront revenue, documenting the nonlinear effects of heat and cold. Second, it evaluates whether
temporal substitution offsets these losses by shifting spending to subsequent days. Next, it evaluates how
urban green space affects revenue by mitigating the damage from extreme heat and through recovered
amenity value. Following, this section presents back-of-the-envelope climate scenarios to assess the aggregate
consequences of future warming and the potential for green space to buffer these effects. Finally, this section

presents various placebo and robustness analyses.

5.1 Heat on Revenue

The regression results from Model (1) are presented graphically in Figure 5. Once temperatures exceed
35 °C, revenue begins to decline. The drop is particularly sharp beyond 37.5 °C, where revenue falls by 9
percent on average for all storefronts. On days above 40 °C, average revenue is comparable to that on a 0
°C day. Revenue increases steadily as temperature rises from below 0 °C up to 35 °C. Full regression results
are reported in Appendix Table A2.

Although extremely hot and cold days are relatively rare (Figure 3), the analysis contains approximately
half a million of each due to the large size of the sample. Observations of extremely hot days are spread
across thirty-three cities, and observations of extremely cold days are found in thirty-eight.

Tests for regional adaptation provide little evidence that U.S. storefronts respond differently to extreme
heat across heterogeneous climates (Appendix C). While warmer regions appear more sensitive to hot days,
this pattern is likely driven by the concentration of extremely hot observations in the South and Southwest,

whereas cooler regions experience fewer extreme heat events. As a result, estimates of adaptation in cooler
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Figure 5: The Effect of Heat on Revenue
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The coefficients from Model (1) are plotted, which regresses the logarithm of daily revenue on 2.5 °C
temperature bins, with 20-22.5 °C as the reference category. The model controls for storefront fixed
effects, city-by-month seasonal effects, year effects, day-of-week effects, and the monthly distribution
of customer income. Revenue rises steadily from cold temperatures up to about 35 °C, then declines
sharply. Beyond 37.5 °C, revenue falls by nearly 10 percent on average for all storefronts. The damage
of extreme heat on revenue is more severe for brand affiliated storefronts, and less so for non-brand
storefronts.

regions are imprecise and rely heavily on extrapolation. Fitting Model (1) for data from each NOAA climate
zone also does not provide supportive evidence of adaptation, but these results are also imprecise. Given the
data limitation of few observations of hot days in cool regions, the main analysis proceeds without interacting
daily temperature with long-run regional climate. The underlying assumption is that hot days in already

hot regions are the best predictor of how hot days in currently cool regions affect revenue.

5.2 Temporal Substitution

Figure 6 plots the coefficients estimated from Model (2) and shows that cumulative revenue does not recover
from the negative effects of an extreme heat event within a two-week period. On average, a day at or above
37.5 °C leads to a more than 5 percent decline in revenue on the day of the heat event. In the days that follow,
cumulative revenue remains persistently lower. Total revenue over a week decreases by nearly 2 percent if
an extreme heat event occurs at the beginning of the week, and over a two-week period, revenue is down
by more than 1 percent. The results are statistically significant at the 95 percent confidence level through
day 10, and remain significant at the 90 percent level through day 14. Regression results are reported in
Appendix Table A3.

Results from Model (3) shows that consumers may shift spending to pleasant days (defined as days with a
maximum temperature between 20 °C and 35 °C) that follow extremely hot days (above 37.5°C). On average,

revenue is about 2.5 percent higher on pleasant days than on an average day. When a pleasant day occurs
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Figure 6: Revenue Summed Over K Days, following a Heat Event Within k Days
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Model (2) coefficients are plotted, which regresses the logarithm of cumulative revenue over k days on
an indicator for whether at least one of the previous k days was at or above 37.5°C. All specifications
include storefront fixed effects, city-by-month seasonal effects, year effects, day-of-week effects, and
controls for the monthly distribution of customer income. A day at or above 37.5°C reduces revenue
by more than 5 percent on impact, and cumulative revenue remains depressed for up to two weeks.
Standard errors are clustered at the storefront level. Days 10 through 11 are significantly different
from zero at the ov = 0.90 level.

one to five days after an extremely hot day, revenue is significantly higher than the average pleasant day.
After five days, however, the pattern becomes less clear. Overall, these results show that consumers do shift
some spending to pleasant days following extremely hot days. Nevertheless, because a pleasant day does not
always follow an extremely hot day, this substitution behavior is not sufficient to offset cumulative revenue
losses over time, as shown in Figure 6. Regression results are plotted in Appendix Figure A1 and reported

in Appendix Table A4.

5.3 Green Space’s Effect Mitigating Extreme Heat

Estimating the effect of green space on revenue requires limiting the sample to storefronts that are brand
affiliated to use the brand by city by month fixed effect identification strategy. Brands are more susceptible
to heat than the average storefront, but otherwise behave similarly (Figure 5).

Figure 7 shows that a 1 percent increase in surrounding green space increases revenue as temperature
rises (see line labeled Unadjusted Main Effect). This effect becomes significantly different from zero at 27.5
°C, and increases to nearly 1 percent when temperature increases past 35 "C. The Unadjusted Main Effect
line plots coefficients from Model (4), which depict the elasticity of revenue with respect to green space,
conditional on temperature due to the interaction term. These elasticities are derived from the single-stage,
lower bound estimation strategy described in Equation 5. Regression results for Model (4) are in Appendix
Table A5.

Figure 8 illustrates how temperature affects revenue under high and low green space scenarios. A high
green space environment can fully offset or substantially reduce the revenue losses associated with extreme
heat. In the zero green space scenario, a 37.5 °C day results in an approximate 10 percent decrease in revenue.
In contrast, the same temperature in the lower bound estimate of the high green space scenario leads to a

decline that is not statistically distinguishable from zero (see line labeled Unadjusted Main Effect). On a
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Figure 7: Elasticity of Revenue with Respect to Green Space, Unadjusted and Adjusted

)

22

Q 1 o b
> 1
[0

o N

c

- — 1 —
Q ]
o)) .

C —— —

Pt

S, dli-Tray oo L
F T

N O D oD R
Binned Max Temp (°C)

Elasticity
Method

This figure plots elasticities of revenue with respect to surrounding green space, conditional on temper-
ature. The green line labeled Unadjusted Main Effect is derived from Model (4) using the single-stage,
lower-bound strategy in Equation 5. Results show that a 1 percent increase in green space has a
growing positive effect on revenue as temperatures rise, becoming statistically significant at 27.5 °C
and reaching nearly 1 percent at 37.5 °C. The blue line labeled Recovered Amenity Value reflects
the two-stage approach in Equation 6, which recovers the portion of the amenity effect absorbed by
brand-by-city-by-month fixed effects. This figure plots a linear specification of how the amenity value
of green space affects revenue. Under this adjusted specification (Equation 7), the marginal benefit
of green space is just under 1 percent at lower temperatures, rises to nearly 1.5 percent at 35 °C, and
reaches about 2 percent on days above 35 °C. All models include controls for storefront size, parking
lot presence, and the monthly distribution of customer income, as well as fixed effects for brand-by-
city-by-month, year, and day of week. Standard errors are clustered at the storefront level.

- Recovered Amenity Value -e- Unadjusted Main Effect

40 °C day, revenue falls by 20 percent in the low green space scenario, compared to only a 12 percent decline

in this high green space scenario.

5.4 Recovering Green Space’s Amenity Effect

Estimating Equation 6 recovers a portion of the amenity effect of surrounding green space, previously ab-
sorbed by the brand-by-city-by-month fixed effect. Regression results for a linear, logged, second-, and
third-order polynomial function forms of modeling the main effect of green space on revenue are reported
in Appendix Table A6. After controlling for the industry that a brand is a part of and using the linear
specification as the preferred model of how the amenity value of green space affects revenue, a one percent
increase in average green space around a brand (within a given city and month) is associated with a 0.96
percent increase in revenue. Because fixed effects serve as the intercept for each of these units, this recovered
main effect implies that a one percent increase in surrounding green space shifts revenue upward by nearly
an additional percent, as described in Equation 7.

After adjusting for this recovered main effect, the marginal effect of a one percent increase in green space
is shown graphically in Figure 7 (see line labeled Recovered Amenity Value). At lower temperatures, the
marginal benefit of green space is just under 1 percent, gradually rising to almost 1.5 percent at 35°C. When
temperatures exceed 35°C, the marginal benefit of a 1 percent increase in green space jumps to nearly 2

percent.
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Figure 8: Revenue Under High and Low Green Space Scenarios
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This figure compares the effect of temperature on storefront revenue in low versus high green space
environments. In the low green space scenario, revenue declines by about 10 percent at 37.5 °C and by
20 percent at 40 °C. In a lower bound estimate of the effect of a high green space scenario (Unadjusted
Main Effect), the decline at 37.5 °C is not statistically significant, and the loss at 40 °C is only 12
percent. Incorporating the recovered amenity value of green space implies that high green space
environments are consistently more beneficial: on a 20 °C day, storefronts in high green space areas
earn about 10 percent more revenue than those in low green space areas, and by 40 °C this difference
grows to 20 percent.

This recovered amenity value implies a high green space scenario is significantly more beneficial than
low green space scenarios at any temperature, as illustrated in Figure 8 (see line labeled Recovered Amenity
Value). On a 20°C day, storefronts in high green space environments earn about 10 percent more revenue

than those in low green space environments. On a 40 °C day, this difference increases to 20 percent.

5.5 Back of the Envelope Climate Scenario

This paper presents the projected annual revenue change for three back of the envelope climate scenarios
where every temperature observation is shifted upward by 1.5, 3, or 6 °C. This exercise is equivalent to
imposing a mean shift in the distribution of observed temperatures. The results from Model (4) are used
to project revenue under these counterfactual conditions. Total revenue in each climate scenario is then
compared to baseline revenue modeled under current conditions. These climate scenarios are modeled at the
baseline climate scenario and at a counterfactual high green space scenario (all storefronts surrounded by
>10 percent green space).

Figure 9 presents the three climate scenarios projected in four broad climate regions, along with lower
bound estimates of the same climate scenarios in a high green space scenario. The broad climate regions
are grouped as regions with similar median green space and average temperature (see Table 2). This paper
uses the lower bound estimates of the elasticity of revenue with respect to green space (Equation 5) as the

specification for the projected climate scenarios and corresponding finance questions to isolate green space’s
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Figure 9: Projected Annual Revenue Change under Various Counterfactuals (Lower Bound Estimates)
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This figure presents projected changes in annual storefront revenue under three back-of-the-envelope
climate scenarios that shift all daily temperature observations upward by 1.5, 3, or 6 °C. Projections
are based on Model (4) and use the lower-bound elasticity of revenue with respect to green space
(Equation 5). Results are shown for broad climate regions under baseline conditions and under a
counterfactual high green space scenario in which all storefronts are surrounded by at least 10 percent
canopy cover. The Broad Southwest experiences the largest losses under warming, but additional
green space is able to completely or nearly eliminate these losses, even in the most severe warming
scenario.

beneficial cooling service and present a conservative estimate of green space’s benefit to businesses.

Storefronts in the Broad Southwest (West, Southwest and South NOAA climate regions) are the most
vulnerable to heat increases, followed by the Southeast. Any amount of warming is damaging to the Broad
Southwest, whereas all other regions see initial increases in revenue due to currently cool days moving
toward warmer pleasant days. The most severe modeled scenario (6 °C of warming) leads to the Southeast
experiencing a revenue loss, but the Northwest and Broad Northeast (Northeast, Ohio Valley and Upper
Midwest climate regions) only experience revenue increases, regardless of the amount of warming. These
projections assume people are able to substitute shopping and dining trips across seasons.

Temperature increases have different effects across seasons. Figure 10 plots the revenue change by city
using Model (1) under 3 °C of warming. The Southwest region experiences the most damage in the summer.
Ten cities experience a more than 2 percent decrease in revenue during the summer, with Fresno, CA and
Tuscon, AZ experiences the largest drop of approximately 4 percent.? These cities in the Broad Southwest
would have the most to gain from using urban green space to mitigate the damage from extreme heat to
storefronts’ revenue.

Even when using the lower-bound estimate to model the elasticity of revenue with respect to green
space, the Broad Southwest is able to mitigate all losses due to temperature increases by moving to a high
green space scenario (Figure 9). In the baseline green space scenario, the average storefronts’ revenue would

increase by 1.85 percent annually solely due to the heat mitigating service green space provides. In the most

2Fresno, CA; Tucson, AZ; Austin, TX; San Antonio, TX; Las Vegas, NV; Phoenix, AZ; Sacramento, CA; Dallas, TX;
Houston, TX; Riverside, CA.
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Figure 10: Annual 3 °C Climate Scenario by City and Season
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This figure projects revenue changes under a 3 °C warming scenario, disaggregated by city and season
using Model (1). Summer losses are concentrated in the Southwest, where ten cities experience revenue
declines greater than 2 percent and Fresno, CA and Tucson, AZ see drops of about 4 percent. Other
regions experience gains as cooler days shift toward more favorable temperatures.

severe warming scenario, the Broad Southwest only experiences a 0.12 percent loss of revenue under the high
green space scenario. This is in comparison to a 3.25 percent loss that the region would experience in this
severe scenario at its baseline green space. This region has the most to gain because it already experiences
extreme heat and has relatively little urban green space (Table 2).

The annual revenue changes projected using a linear and logged recovered main effect specification for
Equation 7 are plotted in Appendix Figure A3. The amenity value of green space is much larger than the
benefit of the cooling service, regardless of function specification. All regions experience more than a 10
percent increase in annual revenue under all climate scenarios when incorporating green space’s amenity

value.

5.6 Years to Cover Cost of High Green Space Scenario

This papers presents the number of years it would take the cover the cost of moving from the baseline green
space scenario to a high green space scenario (> 10 percent). I present the result for the Broad Southwest
region under the baseline climate scenario.

When using the lower bound estimate of green spaces’ value to storefronts, moving to the high green
space scenario for the average storefront in the Southwest would increase revenue 1.85 percent annually.
The median surrounding green space in the Broad Southwest is around 2 percent. To move from 2 percent
coverage to 10 at a single storefront would require planing approximately 10,000 meters squared of tree
canopy cover, or 100 medium trees. A reasonable approximation of annual revenue at a restaurant, which
the most represented storefront type in this paper’s sample, is $1 million. The cost of planting a tree is $750
(Murphy-Dunning, 2025).

Following, the cost of moving to the high green space scenario is $75 thousand dollars. The annual benefit
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is 18.5 thousand dollars. It would take 4.05 years for the businesses to recuperate the planting cost of the
trees. For the Broad Southwest region, this length of time only becomes shorter under climate scenarios
because the revenue increase over what it would be under any climate scenario increase past 2 percent.

In the baseline climate scenario, other regions do not have as much to gain in terms of revenue increases
from green space mitigating the effect of extreme heat. These regions currently do not experience enough
extreme hot days that need to be mitigated, and also already enjoy much higher levels of green space than
the Broad South West.

5.7 Robustness and Placebo Tests

This paper tests the robustness and legitimacy of the results in multiple ways.

To test whether the main results are sensitive to how surrounding green space is measured, I re-estimate
Model (4) using alternative buffer radii of 50, 100, 400, and 800 meters around each storefront. For each
buffer, tree canopy cover is recalculated as the mean percent canopy within the given radius. The estimated
elasticities of revenue with respect to green space are fairly robust across buffer sizes. All models show that
the effect of green space on revenue begins to spike upward at 32.5 °C and peaks at 37.5 °C. Results for radii
other than the 200 meter preferred specification are less precisely estimated for the 40 °C bin. Appendix
Figure A4 and Table A7 summarize these findings, showing that the moderating effect of green space on
heat-induced revenue losses is consistent across buffer specifications, although varying in precision.

As a placebo test, the data is subset to storefronts that are within a mall or other plaza center (i.e., a
Starbucks within a Target). While the effect of heat on these storefronts’ revenue behaves extremely similar
to the average effect on all storefronts, revenue is unresponsive to heat’s interaction with urban green space
(see Appendix Figure A2). This result is expected, because outdoor green space should not be complimented
to storefronts entirely contained indoors.

To investigate other adaptation channels, I examine whether consumers respond to extreme heat by
substituting in-person spending with online or delivery-based transactions. Using the SafeGraph Spend
dataset, I test whether a higher share of extremely hot days within a month increases the amount of spending
conducted through intermediaries such as DoorDash, Grubhub, or Shopify (see details in Appendix D).
Across multiple specifications, there is no strong evidence that spending shifts toward these intermediaries
in hotter months. While this suggests that adaptive consumer behavior is not captured within the aggregated
transaction data used here, it does not imply that such adaptation does not occur. Papp (2024) finds strong
evidence that some consumers do adapt to extreme heat but using delivery services more. Instead, the
results indicate that any behavioral adaptation of this kind is either limited in scope or not well measured
at the level of monthly-storefront revenue in this dataset.

[Insert robustness to dropping covid]

[Insert robustness to dropping Phoeniz]

6 Conclusion and Discussion

This paper estimates the causal effect of extreme heat and urban green space on storefront revenue across the
49 largest U.S. metropolitan areas. Using high-frequency transaction data combined with detailed tempera-
ture records and satellite-based tree canopy measures, the analysis finds that daily maximum temperatures

above 35 °C depress storefront revenue. Losses are the sharpest beyond 37.5 °C, where revenue declines
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by nearly 10 percent relative to a 20 °C day. These effects are not offset through temporal substitution.
Spending fails to rebound within a two-week window following an extreme heat event.

Urban green space provides a valuable buffer against these damages. A one percent increase in tree
canopy cover raises storefront revenue by roughly one percent under normal conditions, reflecting a general
amenity effect. During periods of extreme heat, this benefit more than doubles. When temperatures exceed
35 °C, the same one-percent increase in canopy corresponds to nearly a two-percent gain in revenue. A two-
stage estimation strategy recovers the part of this effect that represents a recovered amenity value absorbed
by fine brand-by-city fixed effects. Together, these findings show that green space functions simultaneously
as an amenity to storefronts every day and as natural infrastructure that regulates local microclimates on
extremely hot days.

The climate scenario analysis underscores the uneven consequences of warming across U.S. regions. On
average, annual revenue effects appear modest at the national scale, as losses from extreme heat are partially
offset by gains from fewer extremely cold days. Yet seasonal and regional breakdowns reveal concentrated
damages. In the Southwest, summer revenue losses can exceed four percent under a 3 “C warming scenario.
By contrast, northern regions, which have both cooler baseline temperatures and higher canopy cover, see
net gains. This heterogeneity highlights the importance of local conditions.

Cities’ green space varies greatly and is changing in different ways. Some cities, such as Houston,
expanded median canopy cover by 13 percent between 2016 and 2022, while others, such as Phoenix, lost 12
percent over the same period (Falchetta and Hammad, 2025). New York lost 2 percent but still maintains
more canopy cover than many southern cities. Cities beginning with low levels of green space and high heat
exposure stand to benefit the most from investment.

These results diverge from earlier work suggesting that temperature shocks have limited economic sig-
nificance at the establishment level (Addoum et al., 2020). By leveraging high-frequency, daily transaction
data and explicitly modeling extreme heat, this paper demonstrates economically meaningful losses that
accumulate seasonally in hotter regions. Importantly, the analysis focuses on revenue rather than profit, and
thus does not capture cost-side effects that may further amplify the consequences of extreme heat, such as
increased cooling expenditures (Heris et al., 2021) or decreased labor productivity (Dasgupta et al., 2024;
Park, 2022; Park et al., 2021).

The findings contribute to the growing literature on nature-based solutions to climate change. Most
existing work and financing mechanisms have emphasized mitigation (i.e., paying to sequester carbon or
avoid emissions (Barbier and Burgess, 2025)). While co-benefits of nature-based climate solutions are often
acknowledged, they are rarely the basis for investment, with limited exceptions in insurance markets (Beck
et al., 2018; Schelske et al., 2021). The analysis here demonstrates a distinct adaptation channel. Urban
green space reduces the private damages of extreme heat by protecting storefront revenue. This reframes
green space not only as a public good but also as a commercially important asset. Because the benefits
accrue directly to businesses, there is a private incentive to invest in green infrastructure as a form of climate
adaptation.

These private incentives can complement public financing mechanisms. For example, municipal gov-
ernments already issue bonds to finance infrastructure such as parks and streetscapes. If investments in
green space raise storefront revenue, and thereby expand the local tax base, then municipalities could cred-
ibly leverage fiscal instruments to fund canopy expansion. Such effects have been observed. For example,
bat presence has led to higher property tax revenue raised by increasing agricultural yields (Manning and

Fenichel, 2024). By aligning private benefits with public returns, urban green space emerges as a scalable,
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potentially self-financing adaptation strategy.

In sum, this paper shows that extreme heat threatens storefront revenue, that urban green space provides
both amenity and climate-regulating benefits, and that these benefits are strongest where the risks are
highest. Green space therefore represents not just an environmental asset but a financial one that is capable

of delivering resilience to climate change for private businesses while advancing urban livability for people.
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A Supplementary Results

Figure Al: Revenue on Nice Day Following Hot, as Compared to Avg. Nice Day
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Figure A2: Placebo: No Evidence of Green Space Effect in Malls
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Figure A3: Projected Annual Revenue Change under Various Counterfactuals (Recovered Main Effects)
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Table Al: Summary of median surrounding green space by city, and average temperature

City Median Green Space Average Temp (°C)

1 Portland, OR 14.23 18.25
2 Raleigh, NC 13.69 22.02
3 Pittsburgh, PA 12.99 18.00
4  Atlanta, GA 12.02 22.84
5 Minneapolis, MN 11.68 17.90
6 Charlotte, NC 11.34 22.41
7 Memphis, TN 11.25 22.71
8 Richmond, VA 10.50 21.12
9 Baltimore, MD 9.64 20.19
10 Jacksonville, FL 9.55 26.74
11 Tampa, FL 9.26 27.86
12 Nashville, TN 9.00 22.02
13 Milwaukee, WI 8.46 16.60
14 Virginia Beach, VA 8.35 21.17
15 Kansas City, MO 8.15 20.30
16  Rochester, NY 7.96 16.56
17 Buffalo, NY 7.23 16.25
18  Orlando, FL 7.23 28.20
19  Salt Lake City, UT 7.13 18.90
20  Cincinnati, OH 6.96 19.20
21  Seattle, WA 6.72 17.02
22 Louisville, KY 5.95 20.20
23 Miami, FL 5.93 29.07
24  Indianapolis, IN 4.82 18.29
25  Cleveland, OH 4.69 17.03
26  Detroit, MI 4.65 17.35
27 Philadelphia, PA 4.26 19.16
28 San Jose, CA 3.96 23.32
29  Columbus, OH 3.94 18.61
30 Denver, CO 3.90 19.71
31  Chicago, IL 3.23 17.34
32  Houston, TX 3.09 27.06
33  Austin, TX 3.04 26.59
34 Sacramento, CA 2.93 24.81
35 Riverside, CA 2.75 25.86
36 San Diego, CA 2.53 22.51
37 New Orleans, LA 2.43 25.69
38 Fresno, CA 2.14 25.15
39 San Antonio, TX 2.04 27.38
40 Dallas, TX 1.95 25.02
41 New York, NY 1.83 18.22
42  Boston, MA 1.53 17.27
43  Los Angeles, CA 1.28 23.87
44  Tulsa, OK 1.07 23.15
45  Oklahoma City, OK 0.63 22.97
46 Las Vegas, NV 0.58 24.68
47  Phoenix, AZ 0.51 27.22
48 San Francisco, CA 0.35 19.00
49  Tucson, AZ 0.28 27.65
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Table A2: Heat only models

reg_1 reg 2 reg_3 reg 4 reg_5 reg_preferred
Dependent Var.: log_spend log_spend log_spend log_spend log_spend log_spend
Constant 4.715%%* (0.0040) 4.620%** (0.0042)

Share in 25-45K  0.1346%%* (0.0068)  0.1241%%* (0.0068)  0.2274*** (0.0179)  0.3040%** (0.0137)  0.3256™** (0.0137)  0.3465*** (0.0142)
Share in 45-G0K  -0.5369%%* (0.0071)  -0.4966*** (0.0071) 0.1037%%* (0.0211)  0.1407*** (0.0146)  0.2631%** (0.0147)  0.2739*** (0.0153)
Share in 60-75K  -1.241%%% (0.0079)  -1.160*** (0.0079)  -0.0705%* (0.0226)  -0.0698*** (0.0157) 0.0510%* (0.0158)  0.0464** (0.0163)
Share in 75-100K  -0.3510%%% (0.0067) -0.2585%** (0.0067) 0.2025%* (0.0245)  0.2446*** (0.0150)  0.2312%* (0.0150)  0.2623*** (0.0156)
Share in 100-150K  0.0598%%* (0.0060)  0.1666*** (0.0061)  0.3362*** (0.0264)  0.3669%** (0.0147)  0.3353%** (0.0147)  0.3876*** (0.0153)

( ( (
Share >150K 0.4824*%* (0.0048)  0.5374*** (0.0048)  0.0688** (0.0262) 0.0143 (0.0139) 0.1716%%* (0.0143)  0.2195%** (0.0148)
Bin: 0 °C 0.1813%%% (0.0024)  -0.1235%%* (0.0030) -0.1376*** (0.0030) -0.1712%** (0.0029) -0.1313%** (0. 0027)
Bin: 2.5 °C 0.2428%% (0.0027)  -0.0466*** (0.0029) -0.0732%%* (0.0027) -0.0946*** (0.0027) -0.0809*** (0.0025)
Bin: 5 °C 0.1890*** (0.0025)  -0.0366*** (0.0026) -0.0625*** (0.0024) -0.0789*** (0.0024) -0.0719*** (0.0023)
Bin: 7.5 °C 0.1437%%% (0.0023)  -0.0373%* (0.0023) -0.0542%*%* (0.0021) -0.0682*** (0.0021) -0.0565*** (0.0020)
Bin: 10 °C 0.1025%%% (0.0021)  -0.0164*** (0.0021) -0.0285*** (0.0019) -0.0370*** (0.0019) -0.0423*** (0.0018)
Bin: 12.5 °C 0.0316*** (0.0021)  -0.0309*** (0.0019) -0.0431*** (0.0018) -0.0499*** (0.0018) -0.0400*** (0.0017)
Bin: 15 °C 0.0028 (0.0020) -0.0180*** (0.0017)  -0.0234*** (0.0017) -0.0267*** (0.0016) -0.0276*** (0.0016)
Bin: 17.5 °C -0.0192%%% (0.0019)  -0.0128%% (0.0015) -0.0161*** (0.0015) -0.0182*** (0.0015) -0.0180*** (0.0014)
Bin: 225 °C 0.0326*** (0.0018)  0.0096*** (0.0015)  0.0096*** (0.0015)  0.0086*** (0.0015)  0.0034* (0.0014)
Bin: 25 °C 0.0635%** (0.0018)  0.0007 (0.0014) 0.0017 (0.0015) 0.0039%* (0.0015)  0.0071%** (0.0014)
Bin: 275 °C 0.0592%% (0.0018)  -0.0107*** (0.0015) -0.0092*** (0.0016) -0.0059*** (0.0016) ~0.0015 (0.0015)
Bin: 30 °C 0.0617%* (0.0018)  0.0018 (0.0017) 0.0057* (0.0018)  0.0074*** (0.0018)  0.0141%%* (0.0017)
Bin: 325 °C 0.0022 (0.0018) 0.0136*%* (0.0019)  0.0153%** (0.0020)  0.0150%** (0.0020)  0.0204*** (0.0019)
Bin: 35 °C -0.0501%%* (0.0023)  0.0179%** (0.0023)  0.0121%** (0.0025)  0.0205%** (0.0025)  0.0273%** (0.0025)
Bin: -0.0381%%* (0.0020)  0.0038 (0.0035) -0.0169%** (0.0038)  0.0150*** (0.0038)  -0.0041 (0.0037)
Bin: 40 °C -0.1051%%* (0.0033)  -0.0790*** (0.0048)  -0.1009*** (0.0054) -0.0620*** (0.0053) -0.0956*** (0.0053)
Fixed-Effects: - -
POI No No Yes No No No
POI x Month No No No Yes Yes Yes
City No No No Yes Yes Yes
Year No No No No Yes Yes
Day of Week No No No No No Yes
S.E. type 11D 11D by: POI by: POI x Month by: POI x Month by: POI x Month
Observations 13,771,685 13,771,685 13,771,685 13,771,685 13,771,685 13,771,685
R2 0.00678 0.00909 0.39756 0.40944 0.41277 0.49596
Within R2 0.00102 0.00094 0.00083 0.00090

Figure A4: Robustness check for various radii buffer specifications for the effect of green space on revenue
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Temporal Substitution in Response to Heat — Cumulative Effects

Table A3

k=1 k=2 k=3 k=1 k=5 k=6 k=7 k=% k=9 k=10 k=11 k=12 k=13 k=11
Dependent Var.: Tog_tot Tog_tot Tog_tot Tog tot Tog_tot Tog_tot Tog_tot Tog_tot Tog_tot Tog_tot Tog_tot Tog tot Tog_tot Tog_tot
share_25.45 02518 (0.0188)  0.2808*** (0.0250)  0.2029%** (0.0311)  0.2835*** (0.0369)  0.2574*** (0. .xwe 02256 (0.0512)  0.2112*** (0.0571) 0.2062*** (0.0607) 0.2040%* (0.0630)  0.1994** (0.0672) ~ 0.1923** (0.0706) ~ 0.1843* (0.0742)  0.1757* (0.0781)  0.1674* (0.0815)

0.1816%°* (0.0227)  0.2619*** (0.0303)  0.3280*** (0.0376)  0.3806*** (0.0442)  0.4017*** (0.0511) 0.4112°%* (0.0602) 0.4200*** (0.0668) 04417 (0.0708) 0.4587** (0.0744) 0.4697*** (0.0782) 0.ATTA™ (0.0822)  0.4799%** (0.0864)  0.4803*** (0.0910)  0.4776*** (0.0951)

-0.0116 (0.0242) 0.0138 (0.0326) 0.0064% (0.0404)  0.1818%** (0.0474)  0.2420%** (0.0545) 0.3041°%* (0.0639) ~0.3571°** (0.0706) 0.4017*** (0.0747) 0.4388*** (0.0783) 0.4673*** (0.0820) 0.4868*** (0.0860) ~ 0.5008** (0.0901) ~ 0.5105*** (0.0946) ~ 0.5200%** (0.0986)
share75.100 0191755 (0.0255)  0.2585*** (0.0348)  0.3126%** (0.0433)  0.3432*** (0.0500) ~ 0.3447* (0.0587) 0.3257*** (0.0686) 0.3176*** (0.0758) 0.3207°** (0.0802) 0.3241%%* (0.0841) ~0.3264*** (0.0883) ~0.3240%** (0.0926) ~ 0.3161** (0.0970)  0.3026** (0.1017)  0.2948** (0.1058)
share_100_150 032257 (0.0271)  0.3885*** (0.0377)  0.4260%** (0.0479)  0.4522%** (0.0575)  0.4501*** (0.0676) 0.4346*** (0.0801) 0.4323*** (0.0806) 0.4362"** (0.0957) 0.4309*** (0.1011) ~0.4305*** (0.1066) 0.4322°%* (0.1121) ~ 0.4216*** (0.1175)  0.4066*** (0.1233)  0.3942** (0.1281)

share_morel50
preceded_by_hot TRUE
Fixed-Effects:
placekey

year
city_month
day-of-week

02143 (0.0283)
-0.0526*%% (0.0042)

01504 (0.0381)
-0.0386*** (0.0047)

0.0622 (0.0476)
-0.0286*** (0.0051)

-0.0195 (0.0566)
-0.0218%% (0.0055)

-0.1094. (0.0659)
-0.0193** (0.0059)

-0.2007% (
-0.0175** (0.0064)

-0.2589** (0.0857)
-0.0165* (0.0067)

-0.2880** (0.0915)
-0.0161* (0.0069)

-0.3004** (0.0969)
-0.0157* (0.0071)

-0.3344** (0.1023)
-0.0142. (0.0073)

-0.3615*** (0.1079)
-0.0130. (0.0076)

-0.3909*** (0.1135)
-0.0136. (0.0078)

-0.4231%%% (0.1195)
-0.0138. (0.0081)

-0.4502%** (0.1248)
-0.0130 (0.0083)

Yes
Yes

Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes.

Ye

Yes
Yes
Yes
Yes

Yes

Yes
Yes
Yes
Yes

Ye

Yes
Yes
Yes

Yes
Yes
Yes.

Yes
Yes
Yes
Yes

S.E.: Clustered
Observations
R2

Within R2

by: placekey
13,993,732
0.48784
0.00043

by: placekey
10,393,616
0.62829
0.00073

by: placekey
8,316,375
0.70170
0.00115

by: placekey
6,924,102
0.74356
0.00173

by: placekey
5,887,223
0.76988
0.00236

by: placekey
5,058,251
0.79071
0.00307

by: placekey
4,538,509
080551
0.00378

by: placckey
4,218,416
0.81323
0.00425

by: placekey
3.954,703
0.81903
0.00465

by: placekey
3,716,767
0.82445
0.00506

by: placekey
3,500,193
0.82953
0.00545

by: placekey
3,302,872
0.83435
0.00583

by: placekey
3,120,808
0.83908
0.00622

by: placekey
2,968,778
0.84306
0.00657
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Table A4

pleasant,

post_hot1

post_hot2

post_hot3

post_hotd

posthot5

posthot6

post_hot

post_hots

post_hotd

post_hot10

post_hot11

post_hot12

post_hot13

post ot 11

Dependent Var.:

Share in 25-45K
Share in 45-60K
Share in 60-75K
hare in 75-100K
Share in 100-150K
Share >150K

Tree Canopy Covery
Avg. nice day boost
Nice day, hot 1 day ago
Nice day, 2 days

Nice day, 3 days

Nice day, 6 days
day, 7 days

Nice day, 10 days
Nice day, 11 days

day, 14 days
Fixed-Effects:

Togspend

0.2517%* (0.0188)
0.1812%%% (0.0227)
-0.0114 (0.0242)

01913 (0.0255)
232%4% (0.0271)
2152+ (0.0283)

-0.0146*** (0.0032)

0.0267°* (0.0010)

Togspend

0.27524%% (0.0217)
0.2231% (0.0264)
0.0002 (0.0282)

0.2237%% (0.0207)
0.3601%** (0.0318)
0.2082%%* (0.0326)
-0.0152* (0.0033)

0.0491%%* (0.0088)

Togspend

0.2741%%* (0.0219)
0.2221%%% (0.0265)
0.0077 (0.0283)

0.2284%%% (0.0299)
0.3678*** (0.0319)
0.2151%** (0.0827)
-0.0155** (0.0033)

0.0851%** (0.0057)

Togspend

0.2799%** (0.0217)
0.2212%%* (0.0263)
0.0031 (0.0280)

306%** (0.0207)
0.3663*** (0.0317)
0.2088*** (0.0326)
-0.0153%** (0.0033)

o

0.0827** (0.0050)

Togspend

0.2830%** (0.0218)
0.2250*** (0.0263)
-0.0007 (0.0281)

0.2255%** (0.0297)
0.3606*** (0.0317)
0.2037*** (0.0326)
-0.0154%% (0.0033)

0.0555*** (0.0048)

Togspend

0.2808%* (0.0219)
0.2190%%* (0.0265)
0.0039 (0.0283)

0.2220%%% (0.0200)
03614 (0.0319)
0109274 (0.0327)
-0.0153%* (0.0033)

0.0574%* (0.0048)

Togspend

0.2781%%% (0.0217)
0.2221%% (0.0263)
0.0024 (0.0281)

0.2249%%* (0.0207)
0.3590%** (0.0317)
0.2028%** (0.0326)
-0.0154%* (0.0033)

0.0128* (0.0051)

Togspend

0.27024%* (0.0214)
0.2158*** (0.0259)
-0.0085 (0.0278)

0.2205%** (0.0294)
0.3537F% (0.0312)
0.2025°* (0.0322)
-0.0155%** (0.0034)

0.0080. (0.0045)

Togspend

0.2783%** (0.0217)
0.2244%%% (0.0263)
0.0066 (0.0281)

0.2235%% (0.0298)
0.3626%** (0.0317)
0.2089%** (0.0326)

-0.0154%** (0.0034)

-0.0054 (0.0047)

Togspend

0.2764°* (0.0220)
0.2250%%* (0.0266)
0.0093 (0.0283)

0.2279%%* (0.0300)
0.3677+* (0.0320)
0.2115%%* (0.0328)

-0.0156*** (0.0033)

0.0283°* (0.0047)

Togspend

0.2771* (0.0218)
0.2178%%% (0.0264)
-0.0048 (0.0281)

0.2268%%% (0.0208)
0.3581%%% (0.0318)
0.2046%** (0.0327)

-0.0155** (0.0033)

0.0569%** (0.0046)

Togspend

0.2881%%* (0.0219)
0.2289%%* (0.0264)
0.0012 (0.0283)

0.2268%%* (0.0208)
0.3635%** (0.0318)
0.2078*** (0.0327)
-0.01554* (0.0034)

0.0618°** (0.0046)

Togspend

0.2803%** (0.0220)
0.2248%** (0.0265)
0.0016 (0.0283)

0.2167%** (0.0300)
0.3570°** (0.0319)
0.1989°** (0.0328)
-0.0154%%* (0.0034)

0.0480°* (0.0046)

Togspend

0.2778%** (0.0218)
0.2174%** (0.0263)
-0.0011 (0.0282)

0.2181%** (0.0298)
0.3551%%* (0.0318)
0.1976*** (0.0327)
-0.0154*** (0.003

0.0501%** (0.0045)

)

Togspend

0.2805%** (0.0215)
02175 (0.0260)
-0.0017 (0.0278)

02166 (0.0204)
0.3492°* (0.0313)
0.2013*** (0.0323)
-0.0155%* (0.0034)

0.0316°% (0.0043)

POI Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes

City x Month Yes Yes Yes Yes Yes Yes

Day of Week Yes Yes Yes Yes Yes Yes Yes

E.: Cluste by: POI by: POL by: POL by: POL by: POI by: POI by: POI by: POI by: POL

Observations 12,071,939 11,868,95 11,871,528 11,790,182 11,972,001 11,921,958 11,728,267 11,711,944 11,638,248 12,102,727
R2 0.49607 0.49905 0.4954 0.49645 0.49547 0.49420 0.49735 0.49554 0.49666 0.49570 0.49248
Within R2 0.00050 0.00052 0.00051 0.00050 0.00049 0.00050 0.00051 0.00052 0.00050 0.00050 0.00050
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Table A5: The Effect of Temperature on Revenue

reg-g

Dependent Var.:

Share in 25-45K
Share in 45-60K
Share in 60-75K
Share in 75-100K
Share in 100-150K
Share >150K
Storefront Size (m2)
Parking Lot

Bin:
Bin:
Bin:
Bin:
Bin:
Bin:
Bin:
Bin:
Bin:
Bin:
Bin:
Bin:
Bin:
Bin:
Bin:
Bin:
Tree
Bin:
Bin:
Bin:
Bin:
Bin:
Bin:
Bin:
Bin:
Bin:
Bin:
Bin:
Bin:
Bin:
Bin:
Bin:
Bin:

0°C

2.5°C

5°C

7.5 °C

10 °C

12,5 °C

15 °C

17.5 °C

22.5°C

25 °C

27.5°C

30 °C

32.5°C

35°C

37.5°C

40 °C

Canopy Covery

0 °C x Tree Canopy Covery
2.5 °C x Tree Canopy Covery
5 °C x Tree Canopy Covery
7.5 °C x Tree Canopy Covery
10 °C x Tree Canopy Covery
12.5 °C x Tree Canopy Covery
15 °C x Tree Canopy Covery
17.5 °C x Tree Canopy Covery
22.5 °C x Tree Canopy Covery
25 °C x Tree Canopy Covery
27.5 °C x Tree Canopy Covery
30 °C x Tree Canopy Covery
32.5 °C x Tree Canopy Covery
35 °C x Tree Canopy Covery
37.5 °C x Tree Canopy Covery
40 °C x Tree Canopy Covery

Fixed-Effects:
Brand x City x Month

Year

Day of Week

S.E.

Clustered

Observations

R2

Within R2

log_spend

0.1645%** (0.0476)
0.1089* (0.0533)
-0.1930%** (0.0580)
0.5068*** (0.0551)
1.092%%% (0.0594)
0.8011%** (0.0541)
0.0001%** (1.74e-5)
-0.1429%** (0.0369)
-0.1115%* (0.0155)
-0.0558*** (0.0141)
-0.0456*** (0.0119)
-0.0431F* (0.0098)
-0.0410%** (0.0092)
-0.0470%** (0.0082)
-0.0362*** (0.0077)
-0.0196** (0.0066)
-0.0007 (0.0066)
0.0034 (0.0069)
-0.0204%* (0.0077)
-0.0107 (0.0084)
0.0037 (0.0099)
-0.0035 (0.0125)
-0.0906*** (0.0186)
-0.2096*** (0.0263)
0.0002 (0.0008)
-0.0030. (0.0016)
-0.0029* (0.0014)
-0.0025* (0.0013)
-0.0018. (0.0010)
0.0004 (0.0010)
-0.0005 (0.0008)
0.0011 (0.0007)
0.0005 (0.0006)
0.0005 (0.0006)
0.0010 (0.0007)
0.0028*** (0.0008)
0.0024* (0.0009)
0.0022* (0.0011)
0.0033* (0.0014)
0.0082** (0.0026)
0.0086* (0.0037)

A~ o~

Yes

Yes

Yes

by: Brand x City ..
3,599,675

0.39571

0.00786
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Table A6: The effect of avg. tree canopy cover on the brand X city X month fixed effect

reg_main_g_1

reg-main_g 2

reg-main_g 3

reg-main_g 4

reg-main_ g 5

Dependent Var.:

Constant
Mean Tree Canopy (200 m)
as.factor(naics_code)445120
Pharmacies & Drug Stores

Cosmetic & Beauty Supply Stores

Gas Stations w/ Conv. Stores
Hobby, Toy & Game Stores
All Other Gen. Merch. Stores
Full-Service Restaurants
Limited-Service Restaurants
Snack & Nonalc. Bev. Bars
Automotive Shops

Beauty Salons

log(Mean Tree Canopy)

Mean Canopy: Squared
Mean Canopy: Cubed

fe_value

4.268*%* (0.0190)
-0.0039 (0.0026)

fe_value

4,136 (0.0651)
0.0096*** (0.0024)
0.1404. (0.0735)
0.5166%%* (0.0727)
0.1754 (0.2133)
0.1499 (0.0970)
0.9084%%* (0.2133)
-0.7974%%% (0.0754)
0.4836*%* (0.1114)
0.1227. (0.0662)
-0.2016** (0.0708)
L1725 (0.1575)
0.4181%* (0.1577)

fe_value
4.135%** (0.0651)

0.1451% (0.0734)
0.5121%%% (0.0727)
0.1721 (0.2133)
0.1744. (0.0965)
0.9058** (0.2133)
-0.7915%% (0.0752)
0.4956*%* (0.1113)
0.1192. (0.0662)
-0.2072%* (0.0709)
1.154%% (0.1577)
0.4196** (0.1576)
0.0428%%* (0.0106)

fe_value

4.081%%* (0.0669)
0.0313%%* (0.0066)
0.1394. (0.0734)
0.5097%%* (0.0726)
0.1997 (0.2131)
0.1761. (0.0972)
0.9334%%% (0.2131)
-0.7871%%% (0.0754)
0.4959%%* (0.1113)
0.1228. (0.0661)
-0.2085** (0.0707)
1.145%% (0.1575)
0.4172% (0.1574)

-0.0013%%* (0.0004)

fe_value

4.079%%* (0.0695)
0.0324% (0.0142)
0.1394. (0.0734)
0.5096%%* (0.0726)
0.2000 (0.2132)
0.1760. (0.0972)
0.9337%%% (0.2132)
-0.7874%%% (0.0755)
0.4968*%* (0.1117)
0.1228. (0.0661)
-0.2086** (0.0707)
1.144%5% (0.1578)
0.4178%* (0.1576)

-0.0014 (0.0016)
4.76e-6 (5.12e-5)

S.E. type
Observations

R2

Adj. R2

11D
3,795
0.00061
0.00035

11D
3,795

0.18790
0.18532

11D
3,795

0.18804
0.18547

11D
3,795

0.19053
0.18775

11D
3,795

0.19053
0.18753

Table A7: Robustness check for various radii buffer specifications for the effect of green space

on revenue

50 100 200 400 800
1 Dependent Var.: log_spend log_spend log_spend log_spend log_spend
2
3 Share in 25-45K 0.1661*** (0.0476)  0.1637*** (0.0476)  0.1649*** (0.0476)  0.1649*** (0.0476)  0.1648*** (0.0476)
4 Share in 45-60K 0.1106* (0.0533) 0.1088* (0.0534) 0.1101* (0.0534) 0.1103* (0.0533) 0.1099* (0.0533)
5  Share in 60-75K -0.1877**% (0.0580)  -0.1931*** (0.0581) -0.1921*** (0.0580) -0.1895** (0.0579)  -0.1901** (0.0580)
6 Share in 75-100K 0.5094*** (0.0551)  0.5080*** (0.0551)  0.5085*** (0.0551)  0.5106*** (0.0550)  0.5105*** (0.0550)
7 Share in 100-150K 1.101%%* (0.0595) 1.095%** (0.0595) 1.094*** (0.0595) 1.099%** (0.0594) 1.098*** (0.0594)
8 Share >150K 0.8138%F* (0.0541)  0.8040%** (0.0542)  0.8024*** (0.0541)  0.8102*** (0.0542)  0.8085*** (0.0541)
9  Storefront Size (m2) 0.0001*** (1.74e-5)  0.0001*** (1.74e-5)  0.0001*** (1.74e-5)  0.0001*** (1.74e-5)  0.0001*** (1.74e-5)
10  Parking Lot -0.1396*** (0.0369)  -0.1435%** (0.0370) -0.1428*** (0.0369) -0.1421*** (0.0370) -0.1428*** (0.0369)
11 Bin: 0°C -0.1244%%* (0.0135)  -0.1150*** (0.0146) -0.1125%** (0.0157) -0.1113*** (0.0169) -0.1006*** (0.0184)
12 Bin: 2.5°C -0.0726%** (0.0119)  -0.0620*** (0.0129)  -0.0564*** (0.0143) -0.0582*** (0.0155) -0.0520** (0.0170)
13 Bin: 5°C -0.0577*%* (0.0099)  -0.0520*** (0.0108) -0.0467*** (0.0120) -0.0491*** (0.0131) -0.0422** (0.0144)
14 Bin: 7.5°C -0.0575%** (0.0082)  -0.0520%** (0.0089) -0.0450*** (0.0098) -0.0471*** (0.0108) -0.0444*** (0.0120)
15 Bin: 10 °C -0.0458*** (0.0076)  -0.0467*** (0.0083) -0.0434*** (0.0094) -0.0477*** (0.0105) -0.0488*** (0.0115)
16 Bin: 12.5 °C -0.0535%** (0.0071)  -0.0521*** (0.0076) -0.0498*** (0.0083) -0.0539*** (0.0092) -0.0570*** (0.0100)
17 Bin: 15 °C -0.0355%** (0.0067)  -0.0356*** (0.0071) -0.0368*** (0.0077) -0.0421*** (0.0084) -0.0478*** (0.0091)
18  Bin: 17.5°C -0.0197*** (0.0059)  -0.0210%** (0.0062) -0.0209** (0.0066)  -0.0230** (0.0071)  -0.0245** (0.0076)
19 Bin: 22.5 °C 0.0025 (0.0059) 0.0006 (0.0062) -0.0005 (0.0066) -0.0038 (0.0070) -0.0051 (0.0074)
20 Bin: 25 °C 0.0074 (0.0061) 0.0059 (0.0064) 0.0040 (0.0069) 0.0013 (0.0075) 0.0004 (0.0081)
21 Bin: 27.5°C -0.0100 (0.0067) -0.0146* (0.0072) -0.0211%* (0.0077)  -0.0301*** (0.0084) -0.0319*** (0.0092)
22 Bin: 30 °C 0.0042 (0.0073) -0.0041 (0.0078) -0.0120 (0.0084) -0.0203* (0.0093) -0.0210* (0.0102)
23 Bin: 32.5°C 0.0176* (0.0085) 0.0086 (0.0092) 0.0004 (0.0100) -0.0057 (0.0112) -0.0064 (0.0121)
24  Bin: 35 °C 0.0101 (0.0108) -0.0020 (0.0117) -0.0082 (0.0125) -0.0165 (0.0138) -0.0175 (0.0149)
25 Bin: 37.5 °C -0.0732%%% (0.0170)  -0.0928%** (0.0177)  -0.0989%** (0.0183) -0.1157*** (0.0189) -0.1248%** (0.0203)
26 Bin: 40 °C -0.1840%*% (0.0255)  -0.2101%** (0.0262) -0.2171%** (0.0261) -0.2201*** (0.0256) -0.2149*** (0.0274)
27  avg_canopy -0.0035** (0.0012)  -0.0004 (0.0009) -0.0002 (0.0008) -0.0018** (0.0007)  -0.0013* (0.0006)
28 Bin: 0 °C x avg_canopy -0.0021 (0.0021) -0.0037. (0.0020) -0.0028. (0.0016) -0.0020 (0.0013) -0.0025* (0.0012)
29 Bin: 2.5 °C x avg_canopy  2.57e-6 (0.0019) -0.0028. (0.0016) -0.0027* (0.0014) -0.0016 (0.0011) -0.0017 (0.0010)
30 Bin: 5 °C x avg_canopy -0.0013 (0.0020) -0.0021 (0.0016) -0.0023. (0.0013) -0.0012 (0.0010) -0.0014 (0.0009)
31 Bin: 7.5 °C x avg_canopy 0.0016 (0.0016) -0.0004 (0.0012) -0.0014 (0.0010) -0.0006 (0.0008) -0.0006 (0.0007)
32 Bin: 10 °C x avg_canopy 0.0034* (0.0015) 0.0021. (0.0012) 0.0008 (0.0010) 0.0011 (0.0008) 0.0010 (0.0007)
33  Bin: 12.5 °C x avg_canopy  0.0021 (0.0013) 0.0008 (0.0010) 8.5e-5 (0.0008) 0.0006 (0.0007) 0.0007 (0.0006)
34  Bin: 15 °C x avg_canopy 0.0027* (0.0012) 0.0016. (0.0009) 0.0012. (0.0007) 0.0015* (0.0006) 0.0017*** (0.0005)
35 Bin: 17.5 °C x avg_canopy  0.0015 (0.0010) 0.0013 (0.0008) 0.0008 (0.0006) 0.0008 (0.0005) 0.0007. (0.0004)
36 Bin: 22.5 °C x avg_canopy -0.0005 (0.0010) 0.0003 (0.0007) 0.0004 (0.0006) 0.0007 (0.0005) 0.0007 (0.0004)
37 Bin: 25 °C x avg_canopy 0.0004 (0.0011) 0.0007 (0.0009) 0.0008 (0.0007) 0.0009 (0.0006) 0.0008 (0.0005)
38 Bin: 27.5 °C x avg_canopy  0.0020 (0.0012) 0.0026** (0.0010) 0.0029%** (0.0008)  0.0030*** (0.0006)  0.0025*** (0.0006)
39  Bin: 30 °C x avg_canopy -0.0011 (0.0015) 0.0017 (0.0012) 0.0026** (0.0009) 0.0028*** (0.0008)  0.0022** (0.0007)
40  Bin: 32.5 °C x avg_canopy -0.0010 (0.0017) 0.0019 (0.0014) 0.0028** (0.0011) 0.0027** (0.0009) 0.0021** (0.0008)
41 Bin: 35 °C x avg_canopy 0.0021 (0.0023) 0.0048** (0.0019) 0.0041*%* (0.0014) 0.0039*** (0.0011)  0.0030** (0.0010)
42 Bin: 37.5 °C x avg_canopy  0.0120%* (0.0043) 0.0140%%* (0.0032)  0.0094*** (0.0024)  0.0093*** (0.0019)  0.0083*** (0.0018)
43 Bin: 40 °C x avg_canopy -0.0042 (0.0063) 0.0134. (0.0075) 0.0095* (0.0044) 0.0047 (0.0031) 0.0014 (0.0034)
44 Fixed-Effects: - - - - -
45  Brand x City x Month Yes Yes Yes Yes Yes
46 Year Yes Yes Yes Yes Yes
47  Day of Week Yes Yes Yes Yes Yes
48
49  S.E.: Clustered by: Brand x City .. by: Brand x City .. by: Brand x City .. by: Brand x City .. by: Brand x City ..
50  Observations 3,599,675 3,599,675 3,599,675 3,599,675 3,599,675
51 R2 0.39569 0.39568 0.39570 0.39569 0.39570
52 Within R2 0.00783 0.00782 0.00785 0.00784 0.00784
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B Additional Evidence from the American Time Use Survey

To provide evidence on how heat affects consumer time use, I combine the American Time Use Survey
(ATUS) with daily weather data. The outcome of interest is daily minutes spent away from home, defined
as any activity that does not occur at home or in the respondent’s own yard. This measure captures time

available for activities such as shopping, dining, and recreation outside the home.

B.1 Sample and Variables

The ATUS microdata are merged with daily maximum temperatures from gridMET in the respondent’s
county. Daily maximum temperature is binned into 5 °C intervals: < 0, 0-5, ..., 35-40, and > 40. The
reference category is 15-20 °C, which corresponds to a comfortable outdoor temperature in prior work on
climate amenities.

For each observation, I observe year, day of week that the respondent was interviewed, season, state of
residence, and indicators for rural location, whether the respondent is an hourly worker, gender, and whether

the diary date falls on a holiday.

B.2 Empirical Specification

I estimate the following model:

TimeAway,, = Y B 1(Ti € h) + ¥ Xt + o5 + aa + ay + €4t (8)
h

where TimeAway,, is minutes spent away from home by individual ¢ on day ¢, T}; is maximum daily temper-
ature, and I(T;; € h) are indicator variables for the temperature bins h (reference = 15-20°C). X;; includes

individual-level controls (rural residence, hourly worker, male, holiday), a, are state fixed effects, a4 are

day-of-week fixed effects, and oy, are year fixed effects.

B.3 Results

Estimates show that time away from home is maximized at mild temperatures and declines significantly on
hotter days. In particular, when maximum temperature exceeds 35 °C, individuals spend over an additional
half hour at home and less time away. These results are consistent with the mechanism in Section 2: extreme
heat reduces demand for out-of-home activities, thereby lowering storefront revenue. Full regression results

are reported in Table A8 and plotted in Figure 1.
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Table A8: Regression Results — Effect of Temperature on Time Away from Home

reg_1

reg_2

reg_3

Dependent Var.:

time_away

time_away

time_away

Constant 044.7%%* (2.147)

t_bin = <0 29.41%%% (4.790)  -31.18%%* (5.776) -32.33%** (5.642)
t_bin = 0-5 -17.52%%% (3.880) -15.26%** (3.857) -16.49*** (3.797)
t_bin = 5-10 -13.75%%* (3.531)  -10.43* (3.979) -10.44%* (3.724)
tbin = 10-15  -10.45%* (3.238)  -7.721* (3.008)  -7.224* (2.731)
t_bin = 20-25  4.769 (2.948) 4.877 (3.104) 4.914. (2.745)
t_bin = 25-30 3.473 (2.827) 5.204. (2.605) 5.788* (2.508)
t_bin = 30-35 -0.1778 (2.971) 1.209 (2.681) 1.827 (2.955)
t_bin = 35-40 -6.216 (4.931) -7.403 (6.569) -8.409 (6.156)
t_bin = >=40 -45.44%%*% (10.68)  -35.98%** (6.431) -35.42*** (6.253)
rural -21.28%* (7.493)
hourly_worker 129.9%** (2.498)
male 35.64%%* (2.429)
holiday -34.77%%* (5.151)
Fixed-Effects: —_—
statefip No Yes Yes

day_of_week No Yes Yes

year No Yes Yes

S.E. type 11D by: statefip by: statefip
Observations 104,301 104,301 104,301

R2 0.00124 0.03824 0.09256

Within R2 - 0.00106 0.05748

C Testing Regional Adaptation to Heat

This appendix examines whether regional adaptation alters the estimated effect of heat on storefront revenue.
Regional adaptation has been shown to be important in global analyses of temperature impacts, where long-
run exposure to hotter climates dampens the effect of extreme heat (Carleton et al., 2022). To assess whether
similar patterns are present within the United States, this paper estimates two alternative specifications that

explicitly allow the effect of heat to interact with a city’s average climate.

C.1 Methods

The first specification augments Model (1) by interacting the daily temperature-bin indicators with the

city’s long-run average maximum temperature:

In(Rit) = Brlu + Y Bul(Hy =h) + > 0nI(Hy = h) x Te + 0 + 74 + €ir, (9)
h h

where T is the long-run average maximum temperature in city c. A main effect for average temperature is
not included because the storefront fixed-effect «; absorbs it.
The second specification models the effect of temperature using a quadratic functional form, interacted

with the city’s average temperature:

(Rit) = BrLiy + 01Ty + 0277 + 61T X Ty + 62T x Tiy + BaGiy + i + 70 + €it, (10)
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Figure A5: The Effect of Temperature in Different Regions
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where Tj; is the maximum daily temperature at storefront ¢ on day ¢, and G, is the average tree canopy
cover surrounding storefront ¢ in year y. Both models include place-of-interest (storefront) fixed effects v,

day-of-week effects, city-by-month seasonal effects, and year effects 7.

C.2 Results

Figure 3 shows the distribution of temperature observations by NOAA climate region. Extremely hot days
(>37.5,°C) are concentrated in the South and Southwest, while such events are rare in cooler regions like
the Northeast and Upper Midwest. As a result, estimates of adaptation for cooler regions rely heavily on
extrapolation. Rather than impose additional structure that risks over-interpreting sparse data, the main
analysis therefore uses the temperature-bin specification in Model (1) without interactions.

Figure A5 presents the results from the non-parametric interaction model. In warmer regions, revenue
declines sharply at high temperatures, with losses exceeding 5 percent on days above 37.5,°C. In contrast,
cooler regions show imprecisely estimated effects at these temperatures.

The parametric interaction model (Figure A6) produces a similar conclusion. Warmer regions appear
more sensitive to extreme heat, but this likely reflects the limited number of very hot days observed in cooler

regions, which constrains the model’s ability to capture their true response.

C.3 Interpretation

Together, these results suggest limited evidence of meaningful regional adaptation within the United States.
The stronger negative responses in warm regions do not necessarily imply that businesses in cooler regions
are more resilient. Instead, they likely arise because cooler regions rarely experience extreme heat, leaving
insufficient observations to identify how revenue responds to rare hot days. For this reason, the main empirical
analyses in this paper rely on Model (1) without regional interactions, which provides more stable estimates

across the full sample.
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Figure A6: The Effect of Temperature in Different Regions
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Overall, this exercise suggests that while regional adaptation may be important in global comparisons,
within the United States the revenue response to extreme heat is relatively uniform across climate regions.

The final section of this appendix explores this more closely.

C.4 NOAA Climate Regions

I fit Model (1) using data from each NOAA climate region, separately. Revenue peaks before 35 °C and then
declines across most NOAA Climate Regions. The exceptions are the South, Southeast and Northeast. In
the South, revenue peaks at 37.5 °C before declining. The Southeast is largely unresponsive to temperature,
but shows a noisy response above 37 “C. The Northeast also exhibits a noisy response above 35 °C.

The resiliency of the Southeast may be explained by the region’s high level of green space surrounding
store fonts. The median surrounding green space in the Southeast is 9% (Table 2). The Northeast’s behavior

at high temperatures can be explained by a lack of power. Figure A7 shows the estimated effects.
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Figure A7: The Effect of Temperature in Different Regions
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D Appendix: Do Hotter Months Shift Spending to Intermedi-
aries?

This appendix examines whether hotter months lead consumers to shift spending toward delivery and e-
commerce intermediaries (e.g., UberEats/Grubhub/Shopify). The analysis examines if monthly storefront
revenue collected through food delivery services are responsive to the share of hot days in the month. To
benchmark results, I also include how total monthly spending at a storefront responds to the share days that
month that are extremely hot (>37.5 °C). Ultimately, I do not find strong evidence that consumers switch
to ordering through a food delivery service in response to hot days. However, the substitution behavior may

take place, but be unobservable within the aggregated dataset used in this paper.

D.1 Data

The SafeGraph Spend dataset provides the total amount of monthly spending that occurred at a storefront
through many intermediaries, as well as the number total number of transactions that used an intermediary.
It does not provide this data at the daily level, like it does for total spending at a storefront. The interme-
diaries I use to measure spending and transactions through a delivery service are the following: DoorDash,
Postmates, Shopify, Olo, Grubhub. Safegraph Spend also provides the total amount of spending, and that
amount that required no intermediary.

I construct the share of extremely hot days as the number of days above 37.5 °C divided by the number
of days a storefront was observed that month. Because the dataset is not a full panel, the denominator may
be significantly smaller than the number of days in that month.

Only a small fraction (2 percent, n = 16,194) of storefront-months report positive spending through a
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delivery service. Ninety-three percent of the transactions that occur through delivery services occurred at
chain restaurant (brand affiliated), indicating that intermediary reporting is more complete among branded

chains than independents.

D.2 Empirical Specifications

Let InS*

wncm

relates the share of hot days to monthly spending with a robust fixed effect specification:

denote the log of a spend measure (x € {total, delivery-service}). The baseline specification

In S}, = B*share_hotim + a; + ptim + Ay + Ve + Eiem, (11)

where o; are storefront fixed effects, p,, month fixed effects, A, year fixed effects, and . city fixed effects.
Standard errors are clustered at the storefront level. An alternative fixed effect specification uses a;xm
(poimonth) in place of o; + pi,, with similar conclusions. An alternative model replaces the dependent
variable with In Nf:tlivery to examine the number of transactions that used a delivery service N9eivery rather
than the total spending. Dining-focused regressions are estimated and restrict to NAICS 722 (Food service

& drinking places) and 445 (Food & beverage stores) to observe the margin where delivery is most plausible.

D.3 Results Summary

Appendix Figure A8 plots coefficient estimates with 95% confidence intervals. Across storefront-months with
nonzero total spend, estimates for Equation (11) indicate that a higher share of hot days is associated with
lower In Sfotal consistent with the daily panel results on heat suppressing revenue. By contrast, coefficients
on In Siflhvery and In anihvery
Within the dining subset (NAICS 722 & 445), signs are similar. However, inference should be tempered by

limited coverage.

are not precisely estimated and do not show evidence of adaptive behavior.

Only about 2% of storefront-months report positive spending through delivery services, and reporting is
concentrated among branded chains. These two limitations qualify any conclusions. First, the SafeGraph
Spend dataset does not observe all transactions conducted with delivery services, biasing against finding
substitution behavior. Second, intermediary reporting appears more complete for large brands, limiting
generalizability to independents. Therefore, other work on online ordering services should be deferred to
(e.g., Papp (2024)).
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Figure A8: Effect of Hotter Months on Total Spending and Delivery Services
Notes: Points plot B* from Equation (11) with 95% confidence intervals.
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